SILYLMANGANATION OF 1,3-DIENES. A FACILE SYNTHESIS OF FUNCTIONALIZED VINYLSILANES

Keigo FUGAMI, Shigeki NAKATSUKASA, Koichiro OSHIMA, Kiitiro UTIMOTO, and Hitosi NOZAKI

Department of Industrial Chemistry, Faculty of Engineering, Kyoto University, Sakyo-ku, Kyoto 606

Treatment of 1,3-dienes with (R₃Si)₃MnMgMe provides silylated allylmanganese compounds which add to carbonyl moiety with high regioselectivity.

The manganese reagent $(R_3Si)_3MnMgMe$ derived from $R_3SiMgMe$ and $MnCl_2$ reacted with terminal acetylenes to give 1,2-disilylated l-alkenes. 1) In further extension of this new reactions, we have examined the reaction of 1,3-dienes with (R₃Si)₃MnMgMe to observe the selective formation of vinylsilanes after quenching with carbonyl compounds.

Treatment of isoprene with the reagent, (PhMe2Si)3MnMgMe gave a mixture of (E)-3-deuterio-1-dimethylphenylsilyl-3-methyl-1-butene (1) (E = D) and 1deuterio-l-dimethylphenylsilyl-3-methyl-2-butene (2) (E = D) (1:5) after quenching with $D_20.^2$ Quenching with MeI gave a mixture of (E)-3,3-dimethyl-1dimethylphenylsilyl-1-butene 1 (E = Me) and 4-dimethylphenylsilyl-2-methyl-2pentene 2 (E = Me) (1:2) in 90% combined yield. In contrast, addition of aldehyde or ketone to the silylated allylmanganese intermediate gave (E)-vinylsilane 1 as a single product.

We are tempted to assume the following reaction mechanism. The reagent, (PhMe₂Si)₃MnMgMe adds to isoprene in 1,2-fashion (or 1,4-fashion) to give allylmanganese compound 3. Reductive elimination of Mn-H and successive readdition produce isomeric allylmanganese compound 4 which reacts with some electrophiles.³⁾ Alicyclic dienes such as cyclopentadiene and 1,3-cyclooctadiene were reluctant to react. The reagent, PhMe2SiLi or PhMe2SiMgMe did not add to isoprene and the manganese atom played a critical role in the reaction. The addition of MeMgI was essential for the complete isomerization of 3 into 4. Treatment of isoprene with (PhMe2Si)3MnLi derived from PhMe2SiLi and $MnCl_2$ gave 4-dimethylphenylsilyl-2-methyl-1-butene (30%) along with 1 (E = H, 10%) and 2 (E = H, 39%) after quenching with water.

$$\frac{d}{d} = \left[\frac{\text{"Mn"}}{\text{"Mn"}} \text{SiMe}_{2} \text{Ph} \right] - \left[\frac{\text{"Mn"}}{\text{4}} \text{SiMe}_{2} \text{Ph} \right] + 2$$

a: (Me₂PhSi)₃MnMgMe "Mn": (Me₂PhSi)₂MnMgMe

b: Electrophile

Table 1. Silylmanganation of 1,3-dienes with (R₃Si)₃MnMgMe

$$R^{2}$$
 R^{2}
 SiR_{3}
 R^{2}
 SiR_{3}

			•			
_	Diene		_		Product Yield/%	
Entry	R^1	R^2	Reagent	Electrophile	1	2
1	Н	Н	(PhMe ₂ Si) ₃ MnMgMe	D ₂ 0	44	25
2			2 3	MeI	11	69
3				PhCHO	70 ^a)	0
4				Me ₂ CO	95	0
5	Н	Me	(PhMe ₂ Si) ₃ MnMgMe	D ₂ O	13	65
6			2 3	MeI	30	60
7				BuCHO	₈₅ b)	0
8				PhCHO	78	0
9				PhCH=CHCHO	74 ^c)	0
10			(Me ₃ Si) ₃ MnMgMe	CH ₃ CH≃CHCHO	75 ^c)	0
11			· g · g ·	Me ₂ CO	76	0
12	Me	Н	(PhMe ₂ Si) ₃ MnMgMe	D ₂ O	46	46
13			2 - 3	PhCHO	68 ^a)	0

a) Erythro/threo = 1/1. b) See Ref. 4. c) Only 1,2-adducts were obtained.

Typical procedure is as follows. An ethereal solution of MeMgI (1.1 mol dm⁻³, 4.1 cm³, 4.5 mmol) was added to a THF solution of PhMe₂SiLi (0.75 mol dm⁻³, 6.0 cm³, 4.5 mmol) and the resulting mixture was stirred at 0 °C for 15 min. A THF solution of Li_2MnCl_4 (1.0 mol dm⁻³, 1.5 cm³, 1.5 mmol) was added, and stirred for another 15 min. Isoprene (0.15 cm³, 1.5 mmol) was added to the dark brown solution. After being stirred for 15 min, valeraldehyde (0.13 g, 1.5 mmol) was added and stirring was continued for 1 h. Extractive workup (1 mol dm⁻³ HCl and EtOAc) followed by purification by preparative tlc on silica-gel gave vinylsilane 1 (E = BuCHOH, 0.37 g) in 85% yield.

References

- 1) J. Hibino, S. Nakatsukasa, K. Fugami, S. Matsubara, K. Oshima, and H. Nozaki, J. Am. Chem. Soc., <u>107</u>, 6416 (1985).
- 2) Silyltitanation of isoprene has been reported to give 4-dimethylphenylsilyl-2-methyl-1-butene. K. Tamao, M. Akita, R. Kanatani, N. Ishida, and M. Kumada, J. Organomet. Chem., 226, C9 (1982).
- 3) Grignard type carbonyl addition of allyl unit with MnCl₂-LiAlH₄ reagent has been reported. T. Hiyama, M. Sawahata, and M. Obayashi, Chem. Lett., <u>1983</u>, 1237; T. Hiyama, M. Obayashi, and A. Nakamura, Organometallics, <u>1</u>, 1249 (1982).
- 4) Bp 150 °C (1.0 Torr, bath temp); IR (neat) 3450, 2950, 1605, 1245, 1110, 840 cm⁻¹; NMR (CCl₄) δ 0.3 (s, 6H), 0.6-1.6 (m, 9H), 0.95 (s, 6H), 3.15 (t, J = 9 Hz, 1H), 5.70 (d, J = 17 Hz, 1H), 6.05 (d, J = 17 Hz, 1H), 7.1-7.4 (m, 5H). Found: C, 74.17; H, 10.60%. Calcd for $C_{18}H_{30}OSi: C$, 74.42; H, 10.41%.

(Received February 26, 1986)